7 ways to Add row in Pandas DataFrame

In this post, we are going to learn about 7 ways to Add row in Pandas DataFrame.These ways can be used to append or insert data to an existing dataframe or empty dataframe.

1. append() method to Add data row by row in Pandas Dataframe


The Pandas Append() method appends rows of other dataframe at the end of the given dataframe. It does not change the original dataframe instead returns a new object. In this example, new rows are initialized as a Python dictionary, and mandatory to pass ignore_index=True, otherwise by setting ignore_index=False, will raise an error.

TypeError(“Can only append a dict if ignore_index=True”) TypeError: Can only append a dict if ignore_index=True

import pandas as pd
  
 
df_studs = pd.DataFrame()
 
new_row = {'Name':'Dev','Subj':'comp','Marks':100}

new_row2 = {'Name':'Jack','Subj':'Math','Marks':100}
 
df_studs = df_studs.append(new_row, ignore_index=True)
df_studs = df_studs.append(new_row2, ignore_index=True)
 
  
print(f'\n{df_studs}')

Output

   Marks  Name  Subj
0  100.0   Dev  comp
1  100.0  Jack  Math

2. concat() method to Add data row by row


The pandas concat() method “Concatenate pandas objects along a particular axis with optional set logic along the other axes.

import pandas as pd
import numpy as np
  
 
df_studs = pd.DataFrame() 


new_row = pd.DataFrame(data=np.array([['jack','Math',100]]), columns=['Name','Subj','Marks'])
new_row1 = pd.DataFrame(data=np.array([['Maxi','Phy',100]]), columns=['Name','Subj','Marks'])

df_studs = pd.concat([df_studs,new_row,new_row1], ignore_index=True)

print(df_studs)

Output

   Name  Subj Marks
0  jack  Math   100
1  Maxi   Phy   100

3. loc() attribute to Add row at specific Index


The loc() attribute of pandas dataframe is used to access a group of rows and columns by labels or boolean array, We can use DataFrame.loc() to access particular cell by row index and column label.

We can get the numbers of rows by using the len(dataframe. index) method to find out the index at which we have to insert a new row.

In this example, we have created an empty data frame(df_studs). To get the length we are using the len() method to find the index on which we have to insert rows.

Python Program to add elements to empty DataFrame

import pandas as pd
  
 
df_studs = pd.DataFrame()
 
df_studs = pd.DataFrame(columns=['Name','Subj','Marks'])
df_studs.loc[len(df_studs.index)] = ['Jack', 'Math', 93]
df_studs.loc[len(df_studs.index)] = ['Rack', 'Math', 93]  
  
print(f'\n{df_studs}')

Output

   Name  Subj Marks
0  Jack  Math    93
1  Rack  Math    93

4. Loc[] to insert list as a row at specific index


We can append a list to the dataframe on the index label in the dataframe by assigning the list to loc[] attribute.

In this example, we are assigning a list at index label loc[“Row_1”] to append a row to the dataframe.

import pandas as pd
 
df_studs = pd.DataFrame(columns=['Name','Subj','Marks'],index=['Row_1', 'Row_2', 'Row_3'])


df_studs.loc['Row_1'] = ['jack', 'Math', 100]

print(df_studs)

Output

       Name  Subj Marks
Row_1  jack  Math   100
Row_2   NaN   NaN   NaN
Row_3   NaN   NaN   NaN

5. iloc[] to add a row to index postion


We can use the Dataframe iloc[] attribute to add a row at a specific index position in the dataframe.In this example, we are inserting a row at index position 0. We can insert rows at the top or bottom or any index of the dataframe.

import pandas as pd
 
df_studs = pd.DataFrame(columns=['Name','Subj','Marks'],index=['Row_1', 'Row_2', 'Row_3'])


df_studs.iloc[0] = ['jack', 'Math', 100]

print(df_studs)

Output

       Name  Subj Marks
Row_1  jack  Math   100
Row_2   NaN   NaN   NaN
Row_3   NaN   NaN   NaN

6. Add Pandas series as a row to Dataframe


In this example, we are appending a series object(ser_obj) in the dataframe to add a new row to DataFrame.

import pandas as pd
 
df_studs = pd.DataFrame(columns=['Name','Subj','Marks'])

ser_obj = pd.Series( ['jack', 'Math', 100], 
                        index=df_studs.columns )

result_df = df_studs.append(ser_obj,
                        ignore_index=True)

print(result_df)

Output

  Name  Subj Marks
0  jack  Math   100

7. Add mutiple rows as dictionary


In this example, we are adding a dictionary s(mydict) in the Panda Dataframe. in which values of the dictionary keys( ‘Name’, ‘Subj’, ‘Marks’) are as a list.

import pandas as pd
 
mydict = {'Name':['Dev','Jack','Rack'],'Subj':['comp','Math','Phy'],'Marks':[100,100,98]}
df_studs = pd.DataFrame(mydict)
  
print(f'\n{df_studs}')

Output

   Name  Subj  Marks
0   Dev  comp    100
1  Jack  Math    100
2  Rack   Phy     98

Summary

In this post, we have learned multiple ways to Add data row by row in Pandas DataFrame that can be used for any empty dataframe or existing dataframe at a specified index or append dictionary and list to dataframe as a row.