Convert Dictionary to Pandas Dataframe

In this post, we are going to learn how to convert Dictionary to Pandas Dataframe using multiple ways that include a single dictionary, nested dictionary, Dictionary of different lengths, list of dictionaries, Dictionary key as columns.

1. Python Dictionary to Dataframe using constructor


In the pd.DataFrame() constructor the dictionary(Student_dict.items()) is passed as an argument where dictionary key will be columns and value will be index.We have specified custom index [‘Row_1′,’Row_2′,’Row_3′,’Row_4’].

If we only pass dictionary names it will not raise value error.

Program Example

import pandas as pd


Student_dict = {'Jack': 100, 'Rack': 100,
'Max': 100,
'David':100
 
}


dict_to_list = list(Student_dict.items())
dict_to_df = pd.DataFrame(dict_to_list,columns=['Name','Marks'],index=['Row_1','Row_2','Row_3','Row_4'])



print(dict_to_df)

Output

        Name  Marks
Row_1   Jack    100
Row_2   Rack    100
Row_3    Max    100
Row_4  David    100

2. Dictionary to dataframe keys as columns


The Student_dict has a list of values corresponding to a single key. We are passing a dictionary as an argument to the dataframe constructor and specified the index too. The created data frame will have dictionary keys as columns and values as indexes.

Program Example

import pandas as pd

Student_dict = {
    'Name': ['Jack', 'Rack', 'Max', 'David'],
    'Marks':[100,100, 100,100],
    'Subject': ['Math', 'Math', 'Music', 'Physic']
}

dict_to_df = pd.DataFrame(Student_dict,index=['Row_1','Row_2','Row_3','Row_4'])

print(dict_to_df)

Output

        Name  Marks Subject
Row_1   Jack    100    Math
Row_2   Rack    100    Math
Row_3    Max    100   Music
Row_4  David    100  Physic

3. Nested dictionaries to Pandas DataFrame


We have a nested dictionary that we have passed as an argument to the dataframe constructor. We have used the transpose() method to transpose columns wise to rows wise.

Program Example

import pandas as pd

Student_dict = {'student1':{'Name': 'Jack','Mark': 100, 'Subject': 'Math'},
 'student2':{ 'Name': 'Rack', 'Mark': 100,'Subject': 'Math'},
'student3':{ 'Name': 'Max', 'Mark': 100,'Subject': 'Music'},
'student4':{ 'Name': 'David', 'Mark':100,'Subject': 'Math'}
 
}


dict_to_df = pd.DataFrame(Student_dict)

print(dict_to_df.transpose())

Output

          Name Mark Subject
student1   Jack  100    Math
student2   Rack  100    Math
student3    Max  100   Music
student4  David  100    Math

4. Pandas form_dict() Method


The pd.DataFrame.from_dict() takes a dictionary as an argument and converts it into dataFrame. It creates a dataframe that has default orientation which is columns that mean keys of the dictionary is used as columns of dataframe and values as an index. We can change the orientation to ‘index ‘ which means index used as columns to dataframe and key as columns.

Syntax

pd.DataFrame.from_dict(dict,orient='columns',dtype=none) 

5. Dictionary to Dataframe Using different orientation


We are converting nested dictionary Student_dict. By using pd.DataFrame.from_dict() method into a data frame by specifying the orientation by orient=’Index’.The default orientation is ‘columns’ which means the key will be used as a column.

Program Example

#python 3.x program dictionary to dataframe of using orientation
import pandas as pd

Student_dict = {'student1':{'Name': 'Jack','Mark': 100, 'Subject': 'Math'},
 'student2':{ 'Name': 'Rack', 'Mark': 100,'Subject': 'Math'},
'student3':{ 'Name': 'Max', 'Mark': 100,'Subject': 'Music'},
'student4':{ 'Name': 'David', 'Mark':100,'Subject': 'Math'}
 
}


dict_to_df = pd.DataFrame.from_dict(Student_dict,orient='Index')

print(dict_to_df)

Output

Name  Mark Subject
student1   Jack   100    Math
student2   Rack   100    Math
student3    Max   100   Music
student4  David   100    Math

6. List of dictionaries to Dataframe


In pd.DataFrame.from_dict() method we have passed List of dictionaries as an argument and the default orientation is columns that mean dictionary keys will be used as columns and values as an index.

Program Example

import pandas as pd


Student_dict = [{'Name': 'Jack','Mark': 100, 'Subject': 'Math'},
 { 'Name': 'Rack', 'Mark': 100,'Subject': 'Math'},
{ 'Name': 'Max', 'Mark': 100,'Subject': 'Music'},
{ 'Name': 'David', 'Mark':100,'Subject': 'Math'}
]

dict_to_df = pd.DataFrame.from_dict(Student_dict)




print(dict_to_df)
 

Output

    Name  Mark Subject
0   Jack   100    Math
1   Rack   100    Math
2    Max   100   Music
3  David   100    Math

7. Dictionary of different length to Dataframe


The nested dictionary Student_dict contain dictionary of different length.

  • we are iterating over the dictionary key, value pair using Student_dict.items() and creating pandas series of key-value pairs.
  • Converting the pandas series of key-value into a dictionary using dict().
  • Finally converting into dataframe using pandas dataframe constructor.

Program to convert Dictionary different length to Dataframe

#Python 3.X Program to convert Dictionary different length to Dataframe 
import pandas as pd
Student_dict = {'student1':{'Name': 'Jack','Mark': 100, 'Subject': 'Math'},
 'student2':{ 'Name': 'Rack', 'Mark': 100},
'student3':{ 'Name': 'Max', 'Subject': 'Music'},
'student4':{ 'Name': 'David', 'Mark':100,'Subject': 'Math'}
 
}

df=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in Student_dict.items() ]))

print(df)
 

Output

       student1 student2 student3 student4
Mark         100      100      NaN      100
Name        Jack     Rack      Max    David
Subject     Math      NaN    Music     Math

8.Dictionary to dataframe by skip data


We can skip some columns while creating a dataframe from the dictionary. In this example, we have to skip the ‘Subject’ column.

Program Example

import pandas as pd

Student_dict = {
    'Name': ['Jack', 'Rack', 'Max', 'David'],
    'Marks':[100,100, 100,100],
    'Subject': ['Math', 'Math', 'Music', 'Physic']
}

dict_to_df = pd.DataFrame(Student_dict,columns=['Name','Marks'])

print(dict_to_df)

Output

    Name  Marks
0   Jack    100
1   Rack    100
2    Max    100
3  David    100

Summary

We have explored multiple ways to Python Dictionary to Pandas Dataframe single, nested, list of dictionaries and dictionary of the list with examples.